On some sequence spaces generated by - and -difference of infinite matrices.
In [11] and [7], the concepts of σ-core and statistical core of a bounded number sequence x have been introduced and also some inequalities which are analogues of Knopp’s core theorem have been proved. In this paper, we characterize the matrices of the class and determine necessary and sufficient conditions for a matrix A to satisfy σ-core(Ax) ⊆ st-core(x) for all x ∈ m.
Henri Poincaré avait déjà remarqué que les variétés stable et instable du pendule perturbé, défini par l’hamiltonienne coïncident pas lorsque que le paramètre n’est pas nul, mais qu’on peut leur associer un même développement formel divergent en puissance de . Cette divergence est ici analysée au moyen de la récente théorie de la résurgence, et du calcul étranger qui permet de trouver un équivalent asymptotique de l’écart des deux variétés pour tendant vers zéro - du moins cela est-il montré...
We investigate the extent to which sequence spaces are determined by the sequences of 0's and 1's that they contain.
In [3] it was discovered that one of the main results in [1] (Theorem 5.2), applied to three spaces, contains a nontrivial gap in the argument, but neither the gap was closed nor a counterexample was provided. In [4] the authors verified that all three above mentioned applications of the theorem are true and stated a problem concerning the topological structure of one of these three spaces. In this paper we answer the problem and give a counterexample to the theorem in doubt. Also we establish a...