Inverspositive Operatoren und Taubersätze in der Erneuerungstheorie.
Harro Walk (1975)
Monatshefte für Mathematik
Jean ESTERLE (1979/1980)
Seminaire de Théorie des Nombres de Bordeaux
Earl Berkson (2014)
Studia Mathematica
Let , where, for 1 ≤ r < ∞, (resp., ) denotes the class of functions (resp., bounded functions) g: → ℂ such that g has bounded r-variation (resp., uniformly bounded r-variations) on (resp., on the dyadic arcs of ). In the author’s recent article [New York J. Math. 17 (2011)] it was shown that if is a super-reflexive space, and E(·): ℝ → () is the spectral decomposition of a trigonometrically well-bounded operator U ∈ (), then over a suitable non-void open interval of r-values, the condition...
A.A. Balkema, J.L. Geluk, L. de Haan (1995)
Publications de l'Institut Mathématique
Nicholas H. Bingham, Jozef L. Teugels (1980)
Mathematische Zeitschrift
Móricz, Ferenc, Stadtmüller, Ulrich (2001)
International Journal of Mathematics and Mathematical Sciences
Ferenc Móricz (2013)
Studia Mathematica
Let s: [1,∞) → ℂ be a locally Lebesgue integrable function. We say that s is summable (L,1) if there exists some A ∈ ℂ such that , where . (*) It is clear that if the ordinary limit s(t) → A exists, then also τ(t) → A as t → ∞. We present sufficient conditions, which are also necessary, in order that the converse implication hold true. As corollaries, we obtain so-called Tauberian theorems which are analogous to those known in the case of summability (C,1). For example, if the function s is slowly...
Hubert Tietz (1971)
Monatshefte für Mathematik
P. Erdös (1952)
Publications de l'Institut Mathématique [Elektronische Ressource]
Çanak, İbrahim, Dik, Mehmet, Dik, Filiz (2005)
International Journal of Mathematics and Mathematical Sciences
J.L. Geluk (1989)
Publications de l'Institut Mathématique
Yu. N. Drozzinov, B. I. Zavailov (1990)
Publications de l'Institut Mathématique
Jiří Čížek (1980)
Czechoslovak Mathematical Journal
A.A. Balkema (2002)
Publications de l'Institut Mathématique
Jiří Čížek (1999)
Czechoslovak Mathematical Journal
Peetre, Jaak (1968)
Portugaliae mathematica
Nicholas H. Bingham (1984)
Mathematische Zeitschrift
Ferenc Móricz (2004)
Colloquium Mathematicae
Schmidt’s Tauberian theorem says that if a sequence (xk) of real numbers is slowly decreasing and , then . The notion of slow decrease includes Hardy’s two-sided as well as Landau’s one-sided Tauberian conditions as special cases. We show that ordinary summability (C,1) can be replaced by the weaker assumption of statistical summability (C,1) in Schmidt’s theorem. Two recent theorems of Fridy and Khan are also corollaries of our Theorems 1 and 2. In the Appendix, we present a new proof of Vijayaraghavan’s...
Caslav V. Stanojevic (1987/1988)
Mathematische Annalen
Hubert Tietz (1973)
Journal für die reine und angewandte Mathematik