Asymptotically almost periodic solutions for abstract partial neutral integro-differential equation.
Existence of periodic solutions of functional differential equations with parameters such as Nicholson’s blowflies model call for the investigation of integral equations with parameters defined over spaces with periodic structures. In this paper, we study one such equation , x ∈ Ω, by means of the proper value theory of operators in Banach spaces with cones. Existence, uniqueness and continuous dependence of proper solutions are established.
We present a general spectral decomposition technique for bounded solutions to inhomogeneous linear periodic evolution equations of the form ẋ = A(t)x + f(t) (*), with f having precompact range, which is then applied to find new spectral criteria for the existence of almost periodic solutions with specific spectral properties in the resonant case where may intersect the spectrum of the monodromy operator P of (*) (here sp(f) denotes the Carleman spectrum of f). We show that if (*) has a bounded...
This note contains a criterion for the oscillation of solution of a kind of integro-differential equations with delay.
The existence of a continuous periodic and almost periodic solutions of the nonlinear integral inclusion is established by means of the generalized Schauder fixed point theorem.
In this paper we examine periodic integrodifferential equations in Banach spaces. When the cone is regular, we prove two existence theorems for the extremal solutions in the order interval determined by an upper and a lower solution. Both theorems use only the order structure of the problem and no compactness condition is assumed. In the last section we ask the cone to be only normal but we impose a compactness condition using the ball measure of noncompactness. We obtain the extremal solutions...