Page 1 Next

Displaying 1 – 20 of 1711

Showing per page

A certain integral-recurrence equation with discrete-continuous auto-convolution

Mircea I. Cîrnu (2011)

Archivum Mathematicum

Laplace transform and some of the author’s previous results about first order differential-recurrence equations with discrete auto-convolution are used to solve a new type of non-linear quadratic integral equation. This paper continues the author’s work from other articles in which are considered and solved new types of algebraic-differential or integral equations.

A discrepancy principle for Tikhonov regularization with approximately specified data

M. Thamban Nair, Eberhard Schock (1998)

Annales Polonici Mathematici

Many discrepancy principles are known for choosing the parameter α in the regularized operator equation ( T * T + α I ) x α δ = T * y δ , | y - y δ | δ , in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. We consider a class of discrepancy principles for choosing the regularization parameter when T*T and T * y δ are approximated by Aₙ and z δ respectively with Aₙ not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable...

A dispersion inequality in the Hankel setting

Saifallah Ghobber (2018)

Czechoslovak Mathematical Journal

The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.

A domain decomposition analysis for a two-scale linear transport problem

François Golse, Shi Jin, C. David Levermore (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem

François Golse, Shi Jin, C. David Levermore (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...

Currently displaying 1 – 20 of 1711

Page 1 Next