The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated -ideals are studied. These -ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.
Albeverio, Kondratiev, and Röckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space of any manifold . The name comes from the fact that various elements of the geometry of are constructed via lifting of the corresponding elements of the geometry of . In this note, we construct a general algebraic framework for lifted geometry which can be applied to various “infinite dimensional spaces” associated to . In order to define a lifted...
Let F = ind lim Fₙ be an infinite-dimensional LF-space with density dens F = τ ( ≥ ℵ ₀) such that some Fₙ is infinite-dimensional and dens Fₙ = τ. It is proved that every open subset of F is homeomorphic to the product of an ℓ₂(τ)-manifold and (hence the product of an open subset of ℓ₂(τ) and ). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.
Currently displaying 1 –
3 of
3