Page 1

Displaying 1 – 3 of 3

Showing per page

On Lipschitz and d.c. surfaces of finite codimension in a Banach space

Luděk Zajíček (2008)

Czechoslovak Mathematical Journal

Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated σ -ideals are studied. These σ -ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.

On the differential geometry of some classes of infinite dimensional manifolds

Maysam Maysami Sadr, Danial Bouzarjomehri Amnieh (2024)

Archivum Mathematicum

Albeverio, Kondratiev, and Röckner have introduced a type of differential geometry, which we call lifted geometry, for the configuration space Γ X of any manifold X . The name comes from the fact that various elements of the geometry of Γ X are constructed via lifting of the corresponding elements of the geometry of X . In this note, we construct a general algebraic framework for lifted geometry which can be applied to various “infinite dimensional spaces” associated to X . In order to define a lifted...

Open Subsets of LF-spaces

Kotaro Mine, Katsuro Sakai (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Let F = ind lim Fₙ be an infinite-dimensional LF-space with density dens F = τ ( ≥ ℵ ₀) such that some Fₙ is infinite-dimensional and dens Fₙ = τ. It is proved that every open subset of F is homeomorphic to the product of an ℓ₂(τ)-manifold and = i n d l i m (hence the product of an open subset of ℓ₂(τ) and ). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.

Currently displaying 1 – 3 of 3

Page 1