On Lipschitz and d.c. surfaces of finite codimension in a Banach space
Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated -ideals are studied. These -ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.