A note on general dilation theorems
Let V ⊂ Z be two subspaces of a Banach space X. We define the set of generalized projections by . Now let X = c₀ or , Z:= kerf for some f ∈ X* and (n < m). The main goal of this paper is to discuss existence, uniqueness and strong uniqueness of a minimal generalized projection in this case. Also formulas for the relative generalized projection constant and the strong uniqueness constant will be given (cf. J. Blatter and E. W. Cheney [Ann. Mat. Pura Appl. 101 (1974), 215-227] and G. Lewicki...
Analytic extensions of the metaplectic representation by integral operators of Gaussian type have been calculated in the and the Bargmann-Fock realisations by Howe [How2] and Brunet-Kramer [Brunet-Kramer, Reports on Math. Phys., 17 (1980), 205-215]], respectively. In this paper we show that the resulting semigroups of operators are isomorphic and calculate the intertwining operator.
Let be an infinite-dimensional almost separable Hilbert space. We show that every local automorphism of , the algebra of all bounded linear operators on a Hilbert space , is an automorphism.
On a compact metric space X one defines a transition system to be a lower semicontinuous map . It is known that every Markov operator on C(X) induces a transition system on X and that commuting of Markov operators implies commuting of the induced transition systems. We show that even in finite spaces a pair of commuting transition systems may not be induced by commuting Markov operators. The existence of trajectories for a pair of transition systems or Markov operators is also investigated.
In stochastic partial differential equations it is important to have pathwise regularity properties of stochastic convolutions. In this note we present a new sufficient condition for the pathwise continuity of stochastic convolutions in Banach spaces.
The existence of solutions to a scalar Minty variational inequality of differential type is usually related to monotonicity property of the primitive function. On the other hand, solutions of the variational inequality are global minimizers for the primitive function. The present paper generalizes these results to vector variational inequalities putting the Increasing Along Rays (IAR) property into the center of the discussion. To achieve that infinite elements in the image space are introduced....
The existence of solutions to a scalar Minty variational inequality of differential type is usually related to monotonicity property of the primitive function. On the other hand, solutions of the variational inequality are global minimizers for the primitive function. The present paper generalizes these results to vector variational inequalities putting the Increasing Along Rays (IAR) property into the center of the discussion. To achieve that infinite elements in the image space Y are introduced. Under...