Displaying 581 – 600 of 729

Showing per page

Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point

K. P. R. Sastry, G. V. R. Babu (2005)

Czechoslovak Mathematical Journal

Existence of fixed points of multivalued mappings that satisfy a certain contractive condition was proved by N. Mizoguchi and W. Takahashi. An alternative proof of this theorem was given by Peter Z. Daffer and H. Kaneko. In the present paper, we give a simple proof of that theorem. Also, we define Mann and Ishikawa iterates for a multivalued map T with a fixed point p and prove that these iterates converge to a fixed point q of T under certain conditions. This fixed point q may be different from...

Convergence of iterates of linear operators and the Kelisky-Rivlin type theorems

Jacek Jachymski (2009)

Studia Mathematica

Let X be a Banach space and T ∈ L(X), the space of all bounded linear operators on X. We give a list of necessary and sufficient conditions for the uniform stability of T, that is, for the convergence of the sequence ( T ) n of iterates of T in the uniform topology of L(X). In particular, T is uniformly stable iff for some p ∈ ℕ, the restriction of the pth iterate of T to the range of I-T is a Banach contraction. Our proof is elementary: It uses simple facts from linear algebra, and the Banach Contraction...

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized....

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations...

Convergence of orthogonal series of projections in Banach spaces

Ryszard Jajte, Adam Paszkiewicz (1997)

Annales Polonici Mathematici

For a sequence ( A j ) of mutually orthogonal projections in a Banach space, we discuss all possible limits of the sums S n = j = 1 n A j in a “strong” sense. Those limits turn out to be some special idempotent operators (unbounded, in general). In the case of X = L₂(Ω,μ), an arbitrary unbounded closed and densely defined operator A in X may be the μ-almost sure limit of S n (i.e. S n f A f μ-a.e. for all f ∈ (A)).

Currently displaying 581 – 600 of 729