Displaying 961 – 980 of 1576

Showing per page

On the Fefferman-Phong inequality

Abdesslam Boulkhemair (2008)

Annales de l’institut Fourier

We show that the number of derivatives of a non negative 2-order symbol needed to establish the classical Fefferman-Phong inequality is bounded by n 2 + 4 + ϵ improving thus the bound 2 n + 4 + ϵ obtained recently by N. Lerner and Y. Morimoto. In the case of symbols of type S 0 , 0 0 , we show that this number is bounded by n + 4 + ϵ ; more precisely, for a non negative symbol a , the Fefferman-Phong inequality holds if x α ξ β a ( x , ξ ) are bounded for, roughly, 4 | α | + | β | n + 4 + ϵ . To obtain such results and others, we first prove an abstract result which says that...

On the fixed point property in direct sums of Banach spaces with strictly monotone norms

Stanisław Prus, Andrzej Wiśnicki (2008)

Studia Mathematica

It is shown that if a Banach space X has the weak Banach-Saks property and the weak fixed point property for nonexpansive mappings and Y has the asymptotic (P) property (which is weaker than the condition WCS(Y) > 1), then X ⊕ Y endowed with a strictly monotone norm enjoys the weak fixed point property. The same conclusion is valid if X admits a 1-unconditional basis.

On the fixed points of nonexpansive mappings in direct sums of Banach spaces

Andrzej Wiśnicki (2011)

Studia Mathematica

We show that if a Banach space X has the weak fixed point property for nonexpansive mappings and Y has the generalized Gossez-Lami Dozo property or is uniformly convex in every direction, then the direct sum X ⊕ Y with a strictly monotone norm has the weak fixed point property. The result is new even if Y is finite-dimensional.

On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms

Nguyen Thanh Hong, Trinh Tuan, Nguyen Xuan Thao (2013)

Applications of Mathematics

We deal with several classes of integral transformations of the form f ( x ) D + 2 1 u ( e - u cosh ( x + v ) + e - u cosh ( x - v ) ) h ( u ) f ( v ) d u d v , where D is an operator. In case D is the identity operator, we obtain several operator properties on L p ( + ) with weights for a generalized operator related to the Fourier cosine and the Kontorovich-Lebedev integral transforms. For a class of differential operators of infinite order, we prove the unitary property of these transforms on L 2 ( + ) and define the inversion formula. Further, for an other class of differential operators of finite...

Currently displaying 961 – 980 of 1576