On the solution sets of some nonconvex hyperbolic differential inclusions
Vengono dati nuovi teoremi di regolarità per le soluzioni dell'equazione nel caso in cui è il generatore infinitesimale di un semigruppo analitico in uno spazio di Banach e è una funzione continua.
We are concerned with the solvability of the fourth-order four-point boundary value problem ⎧ , t ∈ [0,1], ⎨ u(0) = u(1) = 0, ⎩ au”(ζ₁) - bu”’(ζ₁) = 0, cu”(ζ₂) + du”’(ζ₂) = 0, where 0 ≤ ζ₁ < ζ₂ ≤ 1, f ∈ C([0,1] × [0,∞) × (-∞,0],[0,∞)). By using Guo-Krasnosel’skiĭ’s fixed point theorem on cones, some criteria are established to ensure the existence, nonexistence and multiplicity of positive solutions for this problem.
This paper is devoted to the solvability of the Lyapunov equation A*U + UA = I, where A is a given nonselfadjoint differential operator of order 2m with nonlocal boundary conditions, A* is its adjoint, I is the identity operator and U is the selfadjoint operator to be found. We assume that the spectra of A* and -A are disjoint. Under this restriction we prove the existence and uniqueness of the solution of the Lyapunov equation in the class of bounded operators.
We consider the generalization Sphi of the Schatten classes Sp obtained in correspondence with opportune continuous, strictly increasing, sub-additive functions phi such that phi(0) = 0 and phi(1) = 1. The purpose of this note is to study the spaces Sphi of the phi-nuclear operators and to compare their properties to those of the by now well-known space S1 of nuclear operators.
We give several conditions implying that the spectral bound of the generator of a -semigroup is negative. Applications to stability theory are considered.