On pairs of automorphisms of von Neumann algebras.
The algebra B(ℋ) of all bounded operators on a Hilbert space ℋ is generated in the strong operator topology by a single one-dimensional projection and a family of commuting unitary operators with cardinality not exceeding dim ℋ. This answers Problem 8 posed by W. Żelazko in [6].
The aim of this paper is to prove that derivations of a C*-algebra A can be characterized in the space of all linear continuous operators T : A → A by the conditions T(1) = 0, T(L∩R) ⊂ L + R for any closed left ideal L and right ideal R. As a corollary we get an extension of the result of Kadison [5] on local derivations in W*-algebras. Stronger results of this kind are proved under some additional conditions on the cohomologies of A.