-bounded semigroups and implicit evolution equations.
We discuss implication relations for boundedness and growth orders of Cesàro means and Abel means of discrete semigroups and continuous semigroups of linear operators. Counterexamples are constructed to show that implication relations between two Cesàro means of different orders or between Cesàro means and Abel means are in general strict, except when the space has dimension one or two.
Let T: H → H be an operator in the complex Hilbert space H. Suppose that T is square bounded in average in the sense that there exists a constant M(T) with the property that, for all natural numbers n and for all x ∈ H, the inequality is satisfied. Also suppose that the adjoint T* of the operator T is square bounded in average with constant M(T*). Then the operator T is power bounded in the sense that is finite. In fact the following inequality is valid for all n ∈ ℕ: ∥Tn∥ ≤ e M(T)M(T*). Suppose...