The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We investigate the characterization of almost periodic C-semigroups, via the Hille-Yosida space Z₀, in case of R(C) being non-dense. Analogous results are obtained for C-cosine functions. We also discuss the almost periodicity of integrated semigroups.
A class of C-distribution semigroups unifying the class of (quasi-) distribution semigroups of Wang and Kunstmann (when C = I) is introduced. Relations between C-distribution semigroups and integrated C-semigroups are given. Dense C-distribution semigroups as well as weak solutions of the corresponding Cauchy problems are also considered.
We introduce various classes of distribution semigroups distinguished by their behavior at the origin. We relate them to quasi-distribution semigroups and integrated semigroups. A class of such semigroups, called strong distribution semigroups, is characterized through the value at the origin in the sense of Łojasiewicz. It contains smooth distribution semigroups as a subclass. Moreover, the analysis of the behavior at the origin involves intrinsic structural results for semigroups. To this purpose,...
We study a classification of κ-times integrated semigroups (for κ > 0) by their (uniform) rate of convergence at the origin: as t → 0 (0 ≤ α ≤ κ). By an improved generation theorem we characterize this behaviour by Hille-Yosida type estimates. Then we consider integrated semigroups with holomorphic extension and characterize their convergence at the origin, as well as the existence of boundary values, by estimates of the associated holomorphic semigroup. Various examples illustrate these results....
Motivated by a great deal of interest recently in operators that may not be densely defined, we deal with regularized semigroups and integrated semigroups that are either not exponentially bounded or not defined on [0,∞) and generated by closed operators which may not be densely defined. Some characterizations and related examples are presented. Our results are extensions of the corresponding results produced by other authors.
We establish an inversion formula of Post-Widder type for -multiplied vector-valued Laplace transforms (α > 0). This result implies an inversion theorem for resolvents of generators of α-times integrated families (semigroups and cosine functions) which, in particular, provides a unified proof of previously known inversion formulae for α-times integrated semigroups.
Suppose A is an injective linear operator on a Banach space that generates a uniformly bounded strongly continuous semigroup . It is shown that generates an -regularized semigroup. Several equivalences for generating a strongly continuous semigroup are given. These are used to generate sufficient conditions on the growth of , on subspaces, for generating a strongly continuous semigroup, and to show that the inverse of -d/dx on the closure of its image in L¹([0,∞)) does not generate a strongly...
We study the local well-posed integrated Cauchy problem
, v(0) = 0, t ∈ [0,κ),
with κ > 0, α ≥ 0, and x ∈ X, where X is a Banach space and A a closed operator on X. We extend solutions increasing the regularity in α. The global case (κ = ∞) is also treated in detail. Growth of solutions is given in both cases.
We introduce the notion of a local n-times integrated C-semigroup, which unifies the classes of local C-semigroups, local integrated semigroups and local C-cosine functions. We then study its relations to the C-wellposedness of the (n + 1)-times integrated Cauchy problem and second order abstract Cauchy problem. Finally, a generation theorem for local n-times integrated C-semigroups is given.
This paper is concerned with the problem of real characterization of locally Lipschitz continuous (n + 1)-times integrated semigroups, where n is a nonnegative integer. It is shown that a linear operator is the generator of such an integrated semigroup if and only if it is closed, its resolvent set contains all sufficiently large real numbers, and a stability condition in the spirit of the finite difference approximation theory is satisfied.
In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.
Currently displaying 1 –
20 of
29