On a class of abstract degenerate fractional differential equations of parabolic type

Marko Kostić

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 1, page 81-101
  • ISSN: 0010-2628

Abstract

top
In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.

How to cite

top

Kostić, Marko. "On a class of abstract degenerate fractional differential equations of parabolic type." Commentationes Mathematicae Universitatis Carolinae 59.1 (2018): 81-101. <http://eudml.org/doc/294379>.

@article{Kostić2018,
abstract = {In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.},
author = {Kostić, Marko},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {abstract degenerate fractional differential equations; infinitely differentiable fractional resolvent families; multivalued linear operators; semi-linear degenerate fractional Cauchy problems; Caputo fractional derivatives},
language = {eng},
number = {1},
pages = {81-101},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a class of abstract degenerate fractional differential equations of parabolic type},
url = {http://eudml.org/doc/294379},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Kostić, Marko
TI - On a class of abstract degenerate fractional differential equations of parabolic type
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 1
SP - 81
EP - 101
AB - In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.
LA - eng
KW - abstract degenerate fractional differential equations; infinitely differentiable fractional resolvent families; multivalued linear operators; semi-linear degenerate fractional Cauchy problems; Caputo fractional derivatives
UR - http://eudml.org/doc/294379
ER -

References

top
  1. Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhäuser/Springer Basel AG, Basel, 2001. 
  2. Bazhlekova E., Fractional Evolution Equations in Banach Spaces, PhD. Thesis, Eindhoven University of Technology, Eindhoven, 2001. 
  3. Bokareva T. A., Sviridyuk G. A., Whitney folds of the phase spaces of some semilinear equations of Sobolev type, Mat. Zametki 55 (1994), no. 3, 3–10, 141 (Russian); translation in Math. Notes 55 (1994), no. 3–4, 237–242. 
  4. Brill H., 10.1016/0022-0396(77)90009-2, J. Diff. Equ. 24 (1977), 412–425. DOI10.1016/0022-0396(77)90009-2
  5. Cardinali T., Santori L., Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach, Comment. Math. Univ. Carolin. 52 (2011), 115–125. 
  6. Cross R., Multivalued Linear Operators, Marcel Dekker Inc., New York, 1998. Zbl0911.47002
  7. Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Pure and Applied Mathematics Series, 256, CRC Press, New York, 2003. 
  8. Diethelm K., The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin, 2010. 
  9. Dlotko T., 10.4064/ba55-4-5, Bull. Pol. Acad. Sci. Math. 55 (2007), 333–346. DOI10.4064/ba55-4-5
  10. Favaron A., Favini A., 10.21099/tkbjm/1331658708, Tsukuba J. Math. 35 (2011), 259–323. DOI10.21099/tkbjm/1331658708
  11. Favini A., Plazzi F., Some results concerning the abstract degenerate nonlinear equation ( d / d t ) M u ( t ) + L u ( t ) = f ( t , K u ( t ) ) , Circuits Systems Signal Process. 5 (1986), 261–274. 
  12. Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Pure and Applied Mathematics, Chapman and Hall/CRC, New York, 1998. 
  13. Fedorov V. E., Davydov P. N., Global solvability of some Sobolev type semilinear equations, Vestnik Chelyabinsk. Univ. Ser. 3 Mat. Mekh. Inform. 12 (2010), 80–87. 
  14. Fedorov V. E., Davydov P. N., 10.1134/S0012266113030087, Differ. Uravn. 49 (2013), 326–335. DOI10.1134/S0012266113030087
  15. Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin-New York, 2001. Zbl0988.34001
  16. Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. Zbl1092.45003
  17. Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, Fl., 2015. 
  18. Kostić M., A note on semilinear fractional equations goverened by abstract differential operators, An. Stiint. Univ. Al. I. Cuza Iasi Mat. 3 (2016), 757–762. 
  19. Kostić M., A note on semilinear degenerate relaxation equations associated with abstract differential operators, Chelyab. Fiz.-Mat. Zh. 1 (2016), 85–93. 
  20. Kostić M., 10.13140/RG.2.2.16103.34729, Book Manuscript, 2016, available at https://www.researchgate. net/publication/323664531_abstract-degenerate. doi: 10.13140/RG.2.2.16103.34729. DOI10.13140/RG.2.2.16103.34729
  21. Kostić M., 10.2298/AADM1701039K, Appl. Anal. Discrete Math. 11 (2017), 39–61. DOI10.2298/AADM1701039K
  22. Kostić M., 10.2298/FIL1703597K, Filomat 31 (2017), 597–619. DOI10.2298/FIL1703597K
  23. Li F., Mild solutions for abstract fractional differential equations with almost sectorial operators and infinite delay, Adv. Differ. Equ. (2013), 2013:327, 11 pp. 
  24. Mainardi F., Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models, Imperial College Press, London, 2010. 
  25. Martínez C., Sanz M., Pastor J., A functional calculus and fractional powers for multivalued linear operators, Osaka J. Math. 37 (2000), 551–576. 
  26. Melnikova I. V., Filinkov A. I., Abstract Cauchy Problems: Three Approaches, Chapman and Hall/CRC, Boca Raton, 2001. 
  27. Pastor J., 10.1007/s10231-010-0182-x, Ann. Mat. Pura. Appl. 191 (2012), 167–180. DOI10.1007/s10231-010-0182-x
  28. Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. Zbl0516.47023
  29. Periago F., 10.1016/S0022-247X(03)00126-4, J. Math. Anal. Appl. 280 (2003), 413–423. DOI10.1016/S0022-247X(03)00126-4
  30. Periago F., Straub B., 10.1007/s00028-002-8079-9, J. Evol. Equ. 2 (2002), 41–68. DOI10.1007/s00028-002-8079-9
  31. Podlubny I., Fractional Differential Equations, Academic Press, New York, 1999. 
  32. Prüss J., Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993. 
  33. Rutkas A. G., Khudoshin I. G., 10.1007/s11072-005-0020-z, Nonlinear Oscill. 7 (2004), 403–417. DOI10.1007/s11072-005-0020-z
  34. Samko S. G., Kilbas A. A., Marichev O. I., Fractional Derivatives and Integrals: Theory and Applications, Gordon and Breach, New York, 1993. 
  35. Sviridyuk G. A., Phase spaces of Sobolev type semilinear equations with a relatively sectorial operator, St. Petersburg Math. J. 6 (1995), 1109–1126. 
  36. Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-posed Problems Series, 42, VSP, Utrecht, 2003. 
  37. von Wahl W., Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 11 (1972), 231–258 (German). 
  38. Wang R.-N., Chen D.-H., Xiao T.-J., 10.1016/j.jde.2011.08.048, J. Differential Equations 252 (2012), 202–235. DOI10.1016/j.jde.2011.08.048
  39. Xiao T.-J., Liang J., The Cauchy Problem for Higher–Order Abstract Differential Equations, Springer, Berlin, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.