On a class of abstract degenerate fractional differential equations of parabolic type
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 1, page 81-101
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKostić, Marko. "On a class of abstract degenerate fractional differential equations of parabolic type." Commentationes Mathematicae Universitatis Carolinae 59.1 (2018): 81-101. <http://eudml.org/doc/294379>.
@article{Kostić2018,
abstract = {In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.},
author = {Kostić, Marko},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {abstract degenerate fractional differential equations; infinitely differentiable fractional resolvent families; multivalued linear operators; semi-linear degenerate fractional Cauchy problems; Caputo fractional derivatives},
language = {eng},
number = {1},
pages = {81-101},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a class of abstract degenerate fractional differential equations of parabolic type},
url = {http://eudml.org/doc/294379},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Kostić, Marko
TI - On a class of abstract degenerate fractional differential equations of parabolic type
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 1
SP - 81
EP - 101
AB - In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.
LA - eng
KW - abstract degenerate fractional differential equations; infinitely differentiable fractional resolvent families; multivalued linear operators; semi-linear degenerate fractional Cauchy problems; Caputo fractional derivatives
UR - http://eudml.org/doc/294379
ER -
References
top- Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhäuser/Springer Basel AG, Basel, 2001.
- Bazhlekova E., Fractional Evolution Equations in Banach Spaces, PhD. Thesis, Eindhoven University of Technology, Eindhoven, 2001.
- Bokareva T. A., Sviridyuk G. A., Whitney folds of the phase spaces of some semilinear equations of Sobolev type, Mat. Zametki 55 (1994), no. 3, 3–10, 141 (Russian); translation in Math. Notes 55 (1994), no. 3–4, 237–242.
- Brill H., 10.1016/0022-0396(77)90009-2, J. Diff. Equ. 24 (1977), 412–425. DOI10.1016/0022-0396(77)90009-2
- Cardinali T., Santori L., Boundary value problems for semilinear evolution inclusions: Carathéodory selections approach, Comment. Math. Univ. Carolin. 52 (2011), 115–125.
- Cross R., Multivalued Linear Operators, Marcel Dekker Inc., New York, 1998. Zbl0911.47002
- Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Pure and Applied Mathematics Series, 256, CRC Press, New York, 2003.
- Diethelm K., The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin, 2010.
- Dlotko T., 10.4064/ba55-4-5, Bull. Pol. Acad. Sci. Math. 55 (2007), 333–346. DOI10.4064/ba55-4-5
- Favaron A., Favini A., 10.21099/tkbjm/1331658708, Tsukuba J. Math. 35 (2011), 259–323. DOI10.21099/tkbjm/1331658708
- Favini A., Plazzi F., Some results concerning the abstract degenerate nonlinear equation , Circuits Systems Signal Process. 5 (1986), 261–274.
- Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Pure and Applied Mathematics, Chapman and Hall/CRC, New York, 1998.
- Fedorov V. E., Davydov P. N., Global solvability of some Sobolev type semilinear equations, Vestnik Chelyabinsk. Univ. Ser. 3 Mat. Mekh. Inform. 12 (2010), 80–87.
- Fedorov V. E., Davydov P. N., 10.1134/S0012266113030087, Differ. Uravn. 49 (2013), 326–335. DOI10.1134/S0012266113030087
- Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin-New York, 2001. Zbl0988.34001
- Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. Zbl1092.45003
- Kostić M., Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, Fl., 2015.
- Kostić M., A note on semilinear fractional equations goverened by abstract differential operators, An. Stiint. Univ. Al. I. Cuza Iasi Mat. 3 (2016), 757–762.
- Kostić M., A note on semilinear degenerate relaxation equations associated with abstract differential operators, Chelyab. Fiz.-Mat. Zh. 1 (2016), 85–93.
- Kostić M., 10.13140/RG.2.2.16103.34729, Book Manuscript, 2016, available at https://www.researchgate. net/publication/323664531_abstract-degenerate. doi: 10.13140/RG.2.2.16103.34729. DOI10.13140/RG.2.2.16103.34729
- Kostić M., 10.2298/AADM1701039K, Appl. Anal. Discrete Math. 11 (2017), 39–61. DOI10.2298/AADM1701039K
- Kostić M., 10.2298/FIL1703597K, Filomat 31 (2017), 597–619. DOI10.2298/FIL1703597K
- Li F., Mild solutions for abstract fractional differential equations with almost sectorial operators and infinite delay, Adv. Differ. Equ. (2013), 2013:327, 11 pp.
- Mainardi F., Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models, Imperial College Press, London, 2010.
- Martínez C., Sanz M., Pastor J., A functional calculus and fractional powers for multivalued linear operators, Osaka J. Math. 37 (2000), 551–576.
- Melnikova I. V., Filinkov A. I., Abstract Cauchy Problems: Three Approaches, Chapman and Hall/CRC, Boca Raton, 2001.
- Pastor J., 10.1007/s10231-010-0182-x, Ann. Mat. Pura. Appl. 191 (2012), 167–180. DOI10.1007/s10231-010-0182-x
- Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. Zbl0516.47023
- Periago F., 10.1016/S0022-247X(03)00126-4, J. Math. Anal. Appl. 280 (2003), 413–423. DOI10.1016/S0022-247X(03)00126-4
- Periago F., Straub B., 10.1007/s00028-002-8079-9, J. Evol. Equ. 2 (2002), 41–68. DOI10.1007/s00028-002-8079-9
- Podlubny I., Fractional Differential Equations, Academic Press, New York, 1999.
- Prüss J., Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993.
- Rutkas A. G., Khudoshin I. G., 10.1007/s11072-005-0020-z, Nonlinear Oscill. 7 (2004), 403–417. DOI10.1007/s11072-005-0020-z
- Samko S. G., Kilbas A. A., Marichev O. I., Fractional Derivatives and Integrals: Theory and Applications, Gordon and Breach, New York, 1993.
- Sviridyuk G. A., Phase spaces of Sobolev type semilinear equations with a relatively sectorial operator, St. Petersburg Math. J. 6 (1995), 1109–1126.
- Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse and Ill-posed Problems Series, 42, VSP, Utrecht, 2003.
- von Wahl W., Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetiger Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 11 (1972), 231–258 (German).
- Wang R.-N., Chen D.-H., Xiao T.-J., 10.1016/j.jde.2011.08.048, J. Differential Equations 252 (2012), 202–235. DOI10.1016/j.jde.2011.08.048
- Xiao T.-J., Liang J., The Cauchy Problem for Higher–Order Abstract Differential Equations, Springer, Berlin, 1998.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.