On a fixed point theorem for weakly sequentially continuous mapping
Let E be a metrizable locally convex topological vector space x ∈ E, and let D be a closed convex subset of E such that x ∈ D. In this paper we prove that the weakly sequentially continuous mapping F: D ∪ D which satisfies V̅ = c̅o̅n̅v̅({x} ∪ F(V))⇒ V is relatively weakly compact, has a fixed point. Employing the above results we prove the existence theorem for the Cauchy problem x'(t) = f(t,x(t)), x(0) = x₀. As compared with the previous...