On Caristi's fixed point theorem in F-type topological spaces.
We discuss the properties of two types of construction of a new t-norm from a given t-norm proposed recently by B. Demant, namely the dilatation and the contraction. In general, the dilatation of a t-norm is an ordinal sum t-norm and the continuity of the outgoing t-norm is preserved. On the other hand, the contraction may violate the continuity as well as the non-continuity of the outgoing t-norm. Several examples are given.