Page 1

Displaying 1 – 3 of 3

Showing per page

The hyperbolic triangle centroid

Abraham A. Ungar (2004)

Commentationes Mathematicae Universitatis Carolinae

Some gyrocommutative gyrogroups, also known as Bruck loops or K-loops, admit scalar multiplication, turning themselves into gyrovector spaces. The latter, in turn, form the setting for hyperbolic geometry just as vector spaces form the setting for Euclidean geometry. In classical mechanics the centroid of a triangle in velocity space is the velocity of the center of momentum of three massive objects with equal masses located at the triangle vertices. Employing gyrovector space techniques we find...

Towards Sub-cellular Modeling with Delaunay Triangulation

G. Grise, M. Meyer-Hermann (2010)

Mathematical Modelling of Natural Phenomena

In this article a novel model framework to simulate cells and their internal structure is described. The model is agent-based and suitable to simulate single cells with a detailed internal structure as well as multi-cellular compounds. Cells are simulated as a set of many interacting particles, with neighborhood relations defined via a Delaunay triangulation. The interacting sub-particles of a cell can assume specific roles – i.e., membrane sub-particle, internal sub-particle, organelles, etc –,...

Currently displaying 1 – 3 of 3

Page 1