Page 1

Displaying 1 – 2 of 2

Showing per page

Sets invariant under projections onto two dimensional subspaces

Simon Fitzpatrick, Bruce Calvert (1991)

Commentationes Mathematicae Universitatis Carolinae

The Blaschke–Kakutani result characterizes inner product spaces E , among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace F there is a norm 1 linear projection onto F . In this paper, we determine which closed neighborhoods B of zero in a real locally convex space E of dimension at least 3 have the property that for every 2 dimensional subspace F there is a continuous linear projection P onto F with P ( B ) B .

Currently displaying 1 – 2 of 2

Page 1