We study the maximum possible number of intersections of the boundaries of a simple -gon with a simple -gon in the plane for . To determine the number is quite easy and known when or is even but still remains open for and both odd. We improve (for ) the easy upper bound to and obtain exact bounds for
We prove a “Tverberg type” multiple intersection theorem. It strengthens the prime case of the original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Bárány et al. (1980), by adding color constraints. It also provides an improved bound for the (topological) colored Tverberg problem of Bárány & Larman (1992) that is tight in the prime case and asymptotically optimal in the general case. The proof is based on relative equivariant obstruction theory.