New conjectural lower bounds on the optimal density of sphere packings.
Page 1
Stillinger, F.H., Torquato, S. (2006)
Experimental Mathematics
Boyvalenkov, Peter, Kazakov, Peter (1995)
Serdica Mathematical Journal
The maximal cardinality of a code W on the unit sphere in n dimensions with (x, y) ≤ s whenever x, y ∈ W, x 6= y, is denoted by A(n, s). We use two methods for obtaining new upper bounds on A(n, s) for some values of n and s. We find new linear programming bounds by suitable polynomials of degrees which are higher than the degrees of the previously known good polynomials due to Levenshtein [11, 12]. Also we investigate the possibilities for attaining the Levenshtein bounds [11, 12]. In such cases...
Cohn, Henry (2002)
Geometry & Topology
S. Szabó (1983)
Aequationes mathematicae
Egon Schulte (1984)
Journal für die reine und angewandte Mathematik
Tibor Tarnai (1984)
Elemente der Mathematik
G. Fejes Tóth (1988)
Acta Arithmetica
Kuperberg, Greg (2000)
Geometry & Topology
Page 1