Sausages are Good Packings.
Page 1 Next
J.M. Wills, U. Betke, M. Henk (1995)
Discrete & computational geometry
Prabhu, Nagabhushana (1999)
International Journal of Mathematics and Mathematical Sciences
U. Brehm (1992)
Discrete & computational geometry
Karlheinz Gröchenig, Andrew Haas (1994/1995)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Ardila, Federico (2007)
Revista Colombiana de Matemáticas
Weißbach, Bernulf (2000)
Beiträge zur Algebra und Geometrie
Keating, Kevin, King, Jonathan L. (1997)
The Electronic Journal of Combinatorics [electronic only]
P. Goossens (1992)
Discrete & computational geometry
Fevens, Thomas, Hernandez, Antonio, Mesa, Antonio, Morin, Patrick, Soss, Michael, Toussaint, Godfried (2001)
Beiträge zur Algebra und Geometrie
A.D. Sands (1992)
Aequationes mathematicae
Mark J. Nielsen (1989)
Mathematische Annalen
Beck, Matthias, Zaslavsky, Thomas (2010)
Journal of Integer Sequences [electronic only]
Bohman, Tom, Holzman, Ron, Kleitman, Dan (2001)
The Electronic Journal of Combinatorics [electronic only]
A. Heppes (1992)
Discrete & computational geometry
Vsevolod F. Lev, Rom Pinchasi (2014)
Acta Arithmetica
We show that if A and B are finite sets of real numbers, then the number of triples (a,b,c) ∈ A × B × (A ∪ B) with a + b = 2c is at most (0.15+o(1))(|A|+|B|)² as |A| + |B| → ∞. As a corollary, if A is antisymmetric (that is, A ∩ (-A) = ∅), then there are at most (0.3+o(1))|A|² triples (a,b,c) with a,b,c ∈ A and a - b = 2c. In the general case where A is not necessarily antisymmetric, we show that the number of triples (a,b,c) with a,b,c ∈ A and a - b = 2c is at most (0.5+o(1))|A|². These estimates...
Pingke Li (2021)
Kybernetika
This paper demonstrates that the sensor cover energy problem in wireless communication can be transformed into a linear programming problem with max-plus linear inequality constraints. Consequently, by a well-developed preprocessing procedure, it can be further reformulated as a 0-1 integer linear programming problem and hence tackled by the routine techniques developed in linear and integer optimization. The performance of this two-stage solution approach is evaluated on a set of randomly generated...
Choudary, A.D.R., Dimca, A., Papadima, Ş. (2005)
Algebraic & Geometric Topology
H. Groemer (1986)
Discrete & computational geometry
T. Bisztriczky, V. Soltan (1994)
Monatshefte für Mathematik
Erdős, Paul (1994)
Mathematica Pannonica
Page 1 Next