Displaying 501 – 520 of 715

Showing per page

Solving a ± b = 2c in elements of finite sets

Vsevolod F. Lev, Rom Pinchasi (2014)

Acta Arithmetica

We show that if A and B are finite sets of real numbers, then the number of triples (a,b,c) ∈ A × B × (A ∪ B) with a + b = 2c is at most (0.15+o(1))(|A|+|B|)² as |A| + |B| → ∞. As a corollary, if A is antisymmetric (that is, A ∩ (-A) = ∅), then there are at most (0.3+o(1))|A|² triples (a,b,c) with a,b,c ∈ A and a - b = 2c. In the general case where A is not necessarily antisymmetric, we show that the number of triples (a,b,c) with a,b,c ∈ A and a - b = 2c is at most (0.5+o(1))|A|². These estimates...

Solving the sensor cover energy problem via integer linear programming

Pingke Li (2021)

Kybernetika

This paper demonstrates that the sensor cover energy problem in wireless communication can be transformed into a linear programming problem with max-plus linear inequality constraints. Consequently, by a well-developed preprocessing procedure, it can be further reformulated as a 0-1 integer linear programming problem and hence tackled by the routine techniques developed in linear and integer optimization. The performance of this two-stage solution approach is evaluated on a set of randomly generated...

Currently displaying 501 – 520 of 715