Compact constant mean curvature surfaces with low genus.
Page 1
Große-Brauckmann, Karsten, Polthier, Konrad (1997)
Experimental Mathematics
Cochet, Charles (2005)
Experimental Mathematics
Boyer, Charles P., Galicki, Krzysztof, Kollár, János, Thomas, Evan (2005)
Experimental Mathematics
Große-Brauckmann, Karsten (1997)
Experimental Mathematics
Sinclair, Robert, Tanaka, Minoru (2002)
Experimental Mathematics
Hsu, Lucas, Kusner, Rob, Sullivan, John (1992)
Experimental Mathematics
Werner C. Rheinboldt, P.J. Rabier (1990)
Numerische Mathematik
Malkowsky, Eberhard, Veličković, Vesna (2001)
Novi Sad Journal of Mathematics
Sinclair, R. (2003)
Experimental Mathematics
Karel Svoboda (1960)
Časopis pro pěstování matematiky
Itoh, Jin-ichi, Sinclair, Robert (2004)
Experimental Mathematics
Sinclair, Robert, Tanaka, Minoru (2002)
Experimental Mathematics
Mariana Hadzhilazova, Ivaïlo M. Mladenov, John Oprea (2007)
Archivum Mathematicum
In this paper we consider non-compact cylinder-like surfaces called unduloids and study some aspects of their geometry. In particular, making use of a Kenmotsu-type representation of these surfaces, we derive explicit formulas for the lengths and areas of arbitrary segments, along with a formula for the volumes enclosed by them.
Rubinstein, J.Hyam, Sinclair, Robert (2005)
Experimental Mathematics
Г.В. Ившина (1991)
Trudy Geometriceskogo Seminara
Page 1