The Baire property in remainders of topological groups and other results
It is established that a remainder of a non-locally compact topological group has the Baire property if and only if the space is not Čech-complete. We also show that if is a non-locally compact topological group of countable tightness, then either is submetrizable, or is the Čech-Stone remainder of an arbitrary remainder of . It follows that if and are non-submetrizable topological groups of countable tightness such that some remainders of and are homeomorphic, then the spaces...