A note on collectionwise normality and product spaces
In 1990, Comfort asked Question 477 in the survey book “Open Problems in Topology”: Is there, for every (not necessarily infinite) cardinal number , a topological group G such that is countably compact for all cardinals γ < α, but is not countably compact? Hart and van Mill showed in 1991 that α = 2 answers this question affirmatively under . Recently, Tomita showed that every finite cardinal answers Comfort’s question in the affirmative, also from . However, the question has remained...
We show that AC is equivalent to the assertion that every compact completely regular topology can be extended to a compact Tychonoff topology.
Confluence of a mapping between topological spaces can be defined by several ways. J.J. Charatonik asked if two definitions of the confluence using the components and quasi-components are equivalent for surjective mappings with compact point inverses. We give the negative answer to this question in Example 2.1.