Regarding a question about the least element map
We prove the following statements: (1) every Tychonoff linked-Lindelöf (centered-Lindelöf, star countable) space can be represented as a closed subspace in a Tychonoff pseudocompact absolutely star countable space; (2) every Hausdorff (regular, Tychonoff) linked-Lindelöf space can be represented as a closed G δ-subspace in a Hausdorff (regular, Tychonoff) absolutely star countable space; (3) there exists a pseudocompact absolutely star countable Tychonoff space having a regular closed subspace which...
We construct in ZFC a cosmic space that, despite being the union of countably many metrizable subspaces, has covering dimension equal to 1 and inductive dimensions equal to 2.
We introduce a generalization of a Dowker space constructed from a Suslin tree by Mary Ellen Rudin, and the rectangle refining property for forcing notions, which modifies the one for partitions due to Paul B. Larson and Stevo Todorčević and is stronger than the countable chain condition. It is proved that Martin's Axiom for forcing notions with the rectangle refining property implies that every generalized Rudin space constructed from Aronszajn trees is non-Dowker, and that the same can be forced...
We complement the literature by proving that for a fixed-point free map the statements (1) admits a finite functionally closed cover with for all (i.e., a coloring) and (2) is fixed-point free are equivalent. When functionally closed is weakened to closed, we show that normality is sufficient to prove equivalence, and give an example to show it cannot be omitted. We also show that a theorem due to van Mill is sharp: for every we construct a strongly zero-dimensional Tychonov space...
We present several sum theorems for Ohio completeness. We prove that Ohio completeness is preserved by taking σ-locally finite closed sums and also by taking point-finite open sums. We provide counterexamples to show that Ohio completeness is preserved neither by taking locally countable closed sums nor by taking countable open sums.
We construct a consistent example of a normal locally compact metacompact space which is not paracompact, answering a question of A. V. Arkhangel’skiĭ and F. Tall. An interplay between a tower in P(ω)/Fin, an almost disjoint family in , and a version of an (ω,1)-morass forms the core of the proof. A part of the poset which forces the counterexample can be considered a modification of a poset due to Judah and Shelah for obtaining a Q-set by a countable support iteration.