Fixed point indices of iterated maps.
Fixed point theorems for compact and nonexpansive mappings on starshaped domains (Preliminary communication)
Fixed points and braids.
Fixed Points and Braids. II.
Fixed points, index, and degree for some set valued functions
Fixed Points of n-Valued Multimaps of the Circle
A multifunction ϕ: X ⊸ Y is n-valued if ϕ(x) is an unordered subset of n points of Y for each x ∈ X. The (continuous) n-valued multimaps ϕ: S¹ ⊸ S¹ are classified up to homotopy by an integer-valued degree. In the Nielsen fixed point theory of such multimaps, due to Schirmer, the Nielsen number N(ϕ) of an n-valued ϕ: S¹ ⊸ S¹ of degree d equals |n - d| and ϕ is homotopic to an n-valued power map that has exactly |n - d| fixed points. Thus the Wecken property, that Schirmer established for manifolds...
Fixed points of set-valued maps with closed proximally ∞-connected values
Introduction Many authors have developed the topological degree theory and the fixed point theory for set-valued maps using homological techniques (see for example [19, 28, 27, 16]). Lately, an elementary technique of single-valued approximation (on the graph) (see [11, 1, 13, 5, 9, 2, 6, 7]) has been used in constructing the fixed point index for set-valued maps with compact values (see [21, 20, 4]). In [20, 4] authors consider set-valued upper semicontinuous...