Embedding, compression and fiberwise homotopy theory.
An embedding from a Cartesian product of two spaces into the Cartesian product of two spaces is said to be factorwise rigid provided that it is the product of embeddings on the individual factors composed with a permutation of the coordinates. We prove that each embedding of a product of two pseudo-arcs into itself is factorwise rigid. As a consequence, if X and Y are metric continua with the property that each of their nondegenerate proper subcontinua is homeomorphic to the pseudo-arc, then X ×...
In this note we present the main ideas of the theory of the Conley index over a base space introduced in the papers [7, 8]. The theory arised as an attempt to solve two questions concerning the classical Conley index. In the definition of the index, the exit set of an isolating neighborhood is collapsed to a point. Some information is lost on this collapse. In particular, topological information about how a set sits in the phase space is lost. The first question addressed is how to retain some of...