The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Arbitrage-free prices of European contracts on risky assets whose log-returns are modelled by Lévy processes satisfy a parabolic partial integro-differential equation (PIDE) . This PIDE is localized to bounded domains and the error due to this localization is estimated. The localized PIDE is discretized by the -scheme in time and a wavelet Galerkin method with degrees of freedom in log-price space. The dense matrix for can be replaced by a sparse matrix in the wavelet basis, and the linear...
Arbitrage-free prices u of European contracts on risky assets whose
log-returns are modelled by Lévy processes satisfy
a parabolic partial integro-differential equation (PIDE)
.
This PIDE is localized to
bounded domains and the error due to this localization is
estimated. The localized PIDE is discretized by the
θ-scheme in time and a wavelet Galerkin method with
N degrees of freedom in log-price space.
The dense matrix for can be replaced by a sparse
matrix in the wavelet basis, and the...
In this paper, we propose a numerical method to solve stochastic elliptic interface problems with random interfaces. Shape calculus is first employed to derive the shape-Taylor expansion in the framework of the asymptotic perturbation approach. Given the mean field and the two-point correlation function of the random interface, we can thus quantify the mean field and the variance of the random solution in terms of certain orders of the perturbation amplitude by solving a deterministic elliptic interface...
We consider an initial and Dirichlet boundary value problem for
a fourth-order linear stochastic parabolic equation, in one space
dimension, forced by an additive space-time white noise.
Discretizing the space-time white noise a modelling error is
introduced and a regularized fourth-order linear stochastic
parabolic problem is obtained. Fully-discrete approximations to the solution of the regularized
problem are constructed by using, for discretization in space, a
Galerkin finite element method...
Currently displaying 1 –
10 of
10