On a Berry-Esseen type bound for the maximum likelihood estimator of a parameter for some stochastic partial differential equations.
We study a new class of Markov type semigroups (not strongly continuous in general) in the space of all real, uniformly continuous and bounded functions on a separable metric space E. Our results allow us to characterize the generators of Markov transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck semigroups.
Estudiamos la existencia y unicidad de soluciones de una ecuación estocástica en derivadas parciales de tipo parabólico propuesta por R. North y R. F. Cahalan en 1982 para la modelización de variabilidad no determinista (como es el caso, por ejemplo, de la acción de volcanes) en el marco de los modelos de balance de energía. El punto más delicado se refiere a la unicidad de soluciones debido a la presencia de un grafo multívoco β en el término de la derecha de la ecuación. En contraste con el caso...
We consider the variant of stochastic homogenization theory introduced in [X. Blanc, C. Le Bris and P.-L. Lions, C. R. Acad. Sci. Série I 343 (2006) 717–724.; X. Blanc, C. Le Bris and P.-L. Lions, J. Math. Pures Appl. 88 (2007) 34–63.]. The equation under consideration is a standard linear elliptic equation in divergence form, where the highly oscillatory coefficient is the composition of a periodic matrix with a stochastic diffeomorphism. The homogenized limit of this problem has been identified...
A rather general class of stochastic evolution equations in Hilbert spaces whose transition semigroups are Feller with respect to the weak topology is found, and consequences for existence of invariant measures are discussed.
In this article we consider elliptic partial differential equations with random coefficients and/or random forcing terms. In the current treatment of such problems by stochastic Galerkin methods it is standard to assume that the random diffusion coefficient is bounded by positive deterministic constants or modeled as lognormal random field. In contrast, we make the significantly weaker assumption that the non-negative random coefficients can be bounded strictly away from zero and infinity by random...
The aim of the paper is to examine the wavelet-Galerkin method for the solution of filtering equations. We use a wavelet biorthogonal basis with compact support for approximations of the solution. Then we compute the Zakai equation for our filtering problem and consider the implicit Euler scheme in time and the Galerkin scheme in space for the solution of the Zakai equation. We give theorems on convergence and its rate. The method is numerically much more efficient than the classical Galerkin method....
We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion...
We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion...