Reflected backward stochastic differential equation with jumps and random obstacle.
We study regularity of stochastic convolutions solving Volterra equations on driven by a spatially homogeneous Wiener process. General results are applied to stochastic parabolic equations with fractional powers of Laplacian.
Si studiano proprietà di regolarità di un integrale di convoluzione del tipo Itȏ.
Motivated by downside risk minimization on the wealth process in an incomplete market model, we have studied in the recent work the asymptotic behavior as time horizon T → ∞ of the minimizing probability that the empirical mean of a controlled semi-martingale falls below a certain level on the time horizon T. This asymptotic behavior relates to a risk-sensitive stochastic control problem in the risk-averse case. Indeed, we obtained an expression of the decay rate of the probability by the Legendre...