Parametric dependence of the solution processes on the coefficients in McShane's stochastic integral equation systems
In this paper we show that a path-wise solution to the following integral equationYt = ∫0t f(Yt) dXt, Y0 = a ∈ Rd,exists under the assumption that Xt is a Lévy process of finite p-variation for some p ≥ 1 and that f is an α-Lipschitz function for some α > p. We examine two types of solution, determined by the solution's behaviour at jump times of the process X, one we call geometric, the other forward. The geometric solution is obtained by adding fictitious time and solving an associated...
As in preceding papers in which we studied the limits of penalized 1-dimensional Wiener measures with certain functionals Γt, we obtain here the existence of the limit, as t → ∞, of d-dimensional Wiener measures penalized by a function of the maximum up to time t of the Brownian winding process (for d = 2), or in {d}≥ 2 dimensions for Brownian motion prevented to exit a cone before time t. Various extensions of these multidimensional penalisations are studied, and the limit laws are described....
Under the uniform asymptotic stability of a finite dimensional Ito equation with periodic coefficients, the asymptotically almost periodicity of the -bounded solution and the existence of a trajectory of an almost periodic flow defined on the space of all probability measures are established.
En este trabajo consideramos ecuaciones integrales estocásticas tipo Ito, que son construidas con integral estocástica de Cabaña, sobre espacios de Hilbert separables y respecto de operadores de Wiener. Se estudian las propiedades de regularidad del proceso solución, analizando su comportamiento respecto de la variación de los coeficientes de la ecuación y de las condiciones iniciales.