Displaying 61 – 80 of 126

Showing per page

On the Kaczmarz algorithm of approximation in infinite-dimensional spaces

Stanisław Kwapień, Jan Mycielski (2001)

Studia Mathematica

The Kaczmarz algorithm of successive projections suggests the following concept. A sequence ( e k ) of unit vectors in a Hilbert space is said to be effective if for each vector x in the space the sequence (xₙ) converges to x where (xₙ) is defined inductively: x₀ = 0 and x = x n - 1 + α e , where α = x - x n - 1 , e . We prove the effectivity of some sequences in Hilbert spaces. We generalize the concept of effectivity to sequences of vectors in Banach spaces and we prove some results for this more general concept.

Potential confinement property of the parabolic Anderson model

Gabriela Grüninger, Wolfgang König (2009)

Annales de l'I.H.P. Probabilités et statistiques

We consider the parabolic Anderson model, the Cauchy problem for the heat equation with random potential in ℤd. We use i.i.d. potentials ξ:ℤd→ℝ in the third universality class, namely the class of almost bounded potentials, in the classification of van der Hofstad, König and Mörters [Commun. Math. Phys.267 (2006) 307–353]. This class consists of potentials whose logarithmic moment generating function is regularly varying with parameter γ=1, but do not belong to the class of so-called double-exponentially...

Propiedades de regularidad de ecuaciones integrales estocásticas de tipo Cabaña, sobre espacios de Hilbert separables.

Ramón Gutiérrez Jáimez, Josefa Linares Pérez (1985)

Trabajos de Estadística e Investigación Operativa

En este trabajo consideramos ecuaciones integrales estocásticas tipo Ito, que son construidas con integral estocástica de Cabaña, sobre espacios de Hilbert separables y respecto de operadores de Wiener. Se estudian las propiedades de regularidad del proceso solución, analizando su comportamiento respecto de la variación de los coeficientes de la ecuación y de las condiciones iniciales.

Random differential inclusions with convex right hand sides

Krystyna Grytczuk, Emilia Rotkiewicz (1991)

Annales Polonici Mathematici

 Abstract. The main result of the present paper deals with the existence of solutions of random functional-differential inclusions of the form ẋ(t, ω) ∈ G(t, ω, x(·, ω), ẋ(·, ω)) with G taking as its values nonempty compact and convex subsets of n-dimensional Euclidean space R n .

Random fixed point theorems for a certain class of mappings in Banach spaces

Jong Soo Jung, Yeol Je Cho, Shin Min Kang, Byung-Soo Lee, Balwant Singh Thakur (2000)

Czechoslovak Mathematical Journal

Let ( Ω , Σ ) be a measurable space and C a nonempty bounded closed convex separable subset of p -uniformly convex Banach space E for some p > 1 . We prove random fixed point theorems for a class of mappings T Ω × C C satisfying: for each x , y C , ω Ω and integer n 1 , T n ( ω , x ) - T n ( ω , y ) a ( ω ) · x - y + b ( ω ) { x - T n ( ω , x ) + y - T n ( ω , y ) } + c ( ω ) { x - T n ( ω , y ) + y - T n ( ω , x ) } , where a , b , c Ω [ 0 , ) are functions satisfying certain conditions and T n ( ω , x ) is the value at x of the n -th iterate of the mapping T ( ω , · ) . Further we establish for these mappings some random fixed point theorems in a Hilbert space, in L p spaces, in Hardy spaces H p and in Sobolev spaces H k , p ...

Currently displaying 61 – 80 of 126