Previous Page 3

Displaying 41 – 53 of 53

Showing per page

On the discretization in time of parabolic stochastic partial differential equations

Jacques Printems (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion...

On the discretization in time of parabolic stochastic partial differential equations

Jacques Printems (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion...

Simulation and approximation of Lévy-driven stochastic differential equations

Nicolas Fournier (2011)

ESAIM: Probability and Statistics

We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study the rate of convergence in law of the paths. We show that when approximating the small jumps by Gaussian variables, the convergence is much faster than when simply neglecting them. For example, when the Lévy measure of the driving process behaves like |z|−1−αdz near 0, for some α ∈ (1,2), we obtain an error of order 1/√n with a computational cost of order nα. For a similar error when neglecting the...

Simulation and approximation of Lévy-driven stochastic differential equations

Nicolas Fournier (2012)

ESAIM: Probability and Statistics

We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study the rate of convergence in law of the paths. We show that when approximating the small jumps by Gaussian variables, the convergence is much faster than when simply neglecting them. For example, when the Lévy measure of the driving process behaves like |z|−1−αdz near 0, for some α∈ (1,2), we obtain an error of order 1/√n with a computational cost of order nα. For a similar error when neglecting the...

Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs

Abdellah Chkifa, Albert Cohen, Ronald DeVore, Christoph Schwab (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations...

Currently displaying 41 – 53 of 53

Previous Page 3