Page 1

Displaying 1 – 8 of 8

Showing per page

Estimation and tests in finite mixture models of nonparametric densities

Odile Pons (2009)

ESAIM: Probability and Statistics

The aim is to study the asymptotic behavior of estimators and tests for the components of identifiable finite mixture models of nonparametric densities with a known number of components. Conditions for identifiability of the mixture components and convergence of identifiable parameters are given. The consistency and weak convergence of the identifiable parameters and test statistics are presented for several models.

Estimation of parameters of a spherical invariant stable distribution

Piotr Szymański (2012)

Applicationes Mathematicae

This paper concerns the estimation of the parameters that describe spherical invariant stable distributions: the index α ∈ (0,2] and the scale parameter σ >0. We present a kind of moment estimators derived from specially transformed original data.

Estimators and tests for variance components in cross nested orthogonal designs

Miguel Fonseca, João Tiago Mexia, Roman Zmyślony (2003)

Discussiones Mathematicae Probability and Statistics

Explicit expressions of UMVUE for variance components are obtained for a class of models that include balanced cross nested random models. These estimators are used to derive tests for the nullity of variance components. Besides the usual F tests, generalized F tests will be introduced. The separation between both types of tests will be based on a general theorem that holds even for mixed models. It is shown how to estimate the p-value of generalized F tests.

Exact distribution for the generalized F tests

Miguel Fonseca, Joao Tiago Mexia, Roman Zmyślony (2002)

Discussiones Mathematicae Probability and Statistics

Generalized F statistics are the quotients of convex combinations of central chi-squares divided by their degrees of freedom. Exact expressions are obtained for the distribution of these statistics when the degrees of freedom either in the numerator or in the denominator are even. An example is given to show how these expressions may be used to check the accuracy of Monte-Carlo methods in tabling these distributions. Moreover, when carrying out adaptative tests, these expressions enable us to estimate...

Extreme distribution functions of copulas

Manuel Úbeda-Flores (2008)

Kybernetika

In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.

Currently displaying 1 – 8 of 8

Page 1