Page 1

Displaying 1 – 11 of 11

Showing per page

A comparison of evidential networks and compositional models

Jiřina Vejnarová (2014)

Kybernetika

Several counterparts of Bayesian networks based on different paradigms have been proposed in evidence theory. Nevertheless, none of them is completely satisfactory. In this paper we will present a new one, based on a recently introduced concept of conditional independence. We define a conditioning rule for variables, and the relationship between conditional independence and irrelevance is studied with the aim of constructing a Bayesian-network-like model. Then, through a simple example, we will...

A method for knowledge integration

Martin Janžura, Pavel Boček (1998)

Kybernetika

With the aid of Markov Chain Monte Carlo methods we can sample even from complex multi-dimensional distributions which cannot be exactly calculated. Thus, an application to the problem of knowledge integration (e. g. in expert systems) is straightforward.

A scratch removal method

Michal Haindl, Stanislava Šimberová (1998)

Kybernetika

We present a new type of scratch removal algorithm based on a causal adaptive multidimensional prediction. The predictor use available information from the failed pixel surrounding due to spectral and spatial correlation of multispectral data but not any information from failed pixel itself. Predictor parameters cannot be directly identified so a special approximation is introduced.

Analytical representation of ellipses in the Aitchison geometry and its application

Karel Hron (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Compositional data, multivariate observations that hold only relative information, need a special treatment while performing statistical analysis, with respect to the simplex as their sample space ([Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986.], [Aitchison, J., Greenacre, M.: Biplots of compositional data. Applied Statistics 51 (2002), 375–392.], [Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds): Compositional data analysis in the geosciences:...

Currently displaying 1 – 11 of 11

Page 1