Displaying 241 – 260 of 1023

Showing per page

Comparing classification tree structures: A special case of comparing q-ary relations II

I. C. Lerman, F. Rouxel (2010)

RAIRO - Operations Research

Comparing q-ary relations on a set 𝒪 of elementary objects is one of the most fundamental problems of classification and combinatorial data analysis. In this paper the specific comparison task that involves classification tree structures (binary or not) is considered in this context. Two mathematical representations are proposed. One is defined in terms of a weighted binary relation; the second uses a 4-ary relation. The most classical approaches to tree comparison are discussed in the context...

Comparing classification tree structures: a special case of comparing q-ary relations

Israel-Cesar Lerman (2010)

RAIRO - Operations Research

Comparing q-ary relations on a set 𝒪 of elementary objects is one of the most fundamental problems of classification and combinatorial data analysis. In this paper the specific comparison task that involves classification tree structures (binary or not) is considered in this context. Two mathematical representations are proposed. One is defined in terms of a weighted binary relation; the second uses a 4-ary relation. The most classical approaches to tree comparison are discussed in the context...

Complete and sufficient statistics and perfect families in orthogonal and error orthogonal normal models

Aníbal Areia, Francisco Carvalho, João T. Mexia (2015)

Open Mathematics

We will discuss orthogonal models and error orthogonal models and their algebraic structure, using as background, commutative Jordan algebras. The role of perfect families of symmetric matrices will be emphasized, since they will play an important part in the construction of the estimators for the relevant parameters. Perfect families of symmetric matrices form a basis for the commutative Jordan algebra they generate. When normality is assumed, these perfect families of symmetric matrices will ensure...

Componentwise concave copulas and their asymmetry

Fabrizio Durante, Pier Luigi Papini (2009)

Kybernetika

The class of componentwise concave copulas is considered, with particular emphasis on its closure under some constructions of copulas (e.g., ordinal sum) and its relations with other classes of copulas characterized by some notions of concavity and/or convexity. Then, a sharp upper bound is given for the L -measure of non-exchangeability for copulas belonging to this class.

Concept of Data Depth and Its Applications

Ondřej Vencálek (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Data depth is an important concept of nonparametric approach to multivariate data analysis. The main aim of the paper is to review possible applications of the data depth, including outlier detection, robust and affine-equivariant estimates of location, rank tests for multivariate scale difference, control charts for multivariate processes, and depth-based classifiers solving discrimination problem.

Conception et analyse de la forme limite d'une famille de coefficients statistiques d'association entre variables relationnelles. II

Israël-César Lerman (1992)

Mathématiques et Sciences Humaines

Cette étude offre une large vision de synthèse prospective ; mais aussi, des résultats techniques précis sur une famille très générale que nous avons élaborée de coefficients d'association entre variables descriptives relationnelles à partir de leur observation empirique sur un ensemble O d'objets élémentaires. Un même coefficient est obtenu à partir d'une forme de normalisation statistique par rapport à une hypothèse d'absence de liaison, d'un indice brut d'association. Ce dernier suppose une représentation...

Conception et analyse de la forme limite d'une famille de coefficients statistiques d'association entre variables relationnelles. 1ère partie

Israël-César Lerman (1992)

Mathématiques et Sciences Humaines

Cette étude offre une large vision de synthèse prospective : mais aussi, des résultats techniques précis sur une famille très générale que nous avons élaborée de coefficients d'association entre variables descriptives relationnelles à partir de leur observation empirique sur un ensemble O d'objets élémentaires. Un même coefficient est obtenu à partir d'une forme de normalisation statistique par rapport à une hypothèse d'absence de liaison, d'un indice brut d'association. Ce dernier suppose une représentation...

Concomitants and linear estimators in an i-dimensional extremal model.

M. Ivette Gomes (1985)

Trabajos de Estadística e Investigación Operativa

We consider here a multivariate sample Xj = (X1.j > ... > Xi.j), 1 ≤ j ≤ n, where the Xj, 1 ≤ j ≤ n, are independent i-dimensional extremal vectors with suitable unknown location and scale parameters λ and δ respectively. Being interested in linear estimation of these parameters, we consider the multivariate sample Zj, 1 ≤ j ≤ n, of the order statistic of largest values and their concomitants, and the best linear unbiased estimators of λ and δ based on such multivariate sample. Computational...

Congruences and ideals in lattice effect algebras as basic algebras

Sylvia Pulmannová, Elena Vinceková (2009)

Kybernetika

Effect basic algebras (which correspond to lattice ordered effect algebras) are studied. Their ideals are characterized (in the language of basic algebras) and one-to-one correspondence between ideals and congruences is shown. Conditions under which the quotients are OMLs or MV-algebras are found.

Currently displaying 241 – 260 of 1023