Efficient computation of enclosures for the exact solvents of a quadratic matrix equation.
Es wird ein kombinierter Algorithmus zur iterativen Einschlissung der Inversen einer Matrix beschrieben. Es handelt sich dabei um eine intervallmässige Version des Schulz'schen Verfahrens. Es wird bewiesen, dass der Algorithmus genauso effizient ist wie ein hisher bekannter aus [2], dass er aber in Bezug auf den akkumulierten Rundungsfehler dem bisherigen Vorgehen vorzuziehen ist. Ein numerisches Beispiel wird gegeben.
We investigate parametric interval linear systems of equations. The main result is a generalization of the Bauer-Skeel and the Hansen-Bliek-Rohn bounds for this case, comparing and refinement of both. We show that the latter bounds are not provable better, and that they are also sometimes too pessimistic. The presented form of both methods is suitable for combining them into one to get a more efficient algorithm. Some numerical experiments are carried out to illustrate performances of the methods....