The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The theoretical background and the implementation of a new interval arithmetic approach for solving sets of differentialalgebraic equations (DAEs) are presented. The proposed approach computes guaranteed enclosures of all reachable states of dynamical systems described by sets of DAEs with uncertainties in both initial conditions and system parameters. The algorithm is based on VALENCIA-IVP, which has been developed recently for the computation of verified enclosures of the solution sets of initial...
In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem. Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide a short overview...
This paper is dealing with solvability of interval systems of linear equations in max-min algebra. Max-min algebra is the algebraic structure in which classical addition and multiplication are replaced by and , where . The notation represents an interval system of linear equations, where and are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 and T5 solvability and give necessary and...
Currently displaying 1 –
4 of
4