Ill-posed equations with transformed argument.
Interior proximal methods for variational inequalities are, in fact, designed to handle problems on polyhedral convex sets or balls, only. Using a slightly modified concept of Bregman functions, we suggest an interior proximal method for solving variational inequalities (with maximal monotone operators) on convex, in general non-polyhedral sets, including in particular the case in which the set is described by a system of linear as well as strictly convex constraints. The convergence analysis of...
The ill-posed problem of solving linear equations in the space of vector-valued finite Radon measures with Hilbert space data is considered. Approximate solutions are obtained by minimizing the Tikhonov functional with a total variation penalty. The well-posedness of this regularization method and further regularization properties are mentioned. Furthermore, a flexible numerical minimization algorithm is proposed which converges subsequentially in the weak* sense and with rate 𝒪(n-1)...