Page 1 Next

Displaying 1 – 20 of 44

Showing per page

Algebras of approximation sequences: Fredholm theory in fractal algebras

Steffen Roch (2002)

Studia Mathematica

The present paper is a continuation of [5, 7] where a Fredholm theory for approximation sequences is proposed and some of its properties and consequences are studied. Here this theory is specified to the class of fractal approximation methods. The main result is a formula for the so-called α-number of an approximation sequence (Aₙ) which is the analogue of the kernel dimension of a Fredholm operator.

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized....

Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations

Nicolas Bacaër (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations...

Linear distributional differential equations of the second order

Milan Tvrdý (1994)

Mathematica Bohemica

The paper deals with the linear differential equation (0.1) ( p u ' ) ' + q ' u = f ' ' with distributional coefficients and solutions from the space of regulated functions. Our aim is to get the basic existence and uniqueness results for the equation (0.1) and to generalize the known results due to F. V. Atkinson [At], J. Ligeza [Li1]-[Li3], R. Pfaff ([Pf1], [Pf2]), A. B. Mingarelli [Mi] as well as the results from the paper [Pe-Tv] concerning the equation (0.1).

Currently displaying 1 – 20 of 44

Page 1 Next