Page 1

Displaying 1 – 5 of 5

Showing per page

A hierarchy for circular codes

Giuseppe Pirillo (2008)

RAIRO - Theoretical Informatics and Applications

We first prove an extremal property of the infinite Fibonacci* word f: the family of the palindromic prefixes {hn | n ≥ 6} of f is not only a circular code but “almost” a comma-free one (see Prop. 12 in Sect. 4). We also extend to a more general situation the notion of a necklace introduced for the study of trinucleotides codes on the genetic alphabet, and we present a hierarchy relating two important classes of codes, the comma-free codes and the circular ones.

Access structures for finding characteristic-dependent linear rank inequalities

Victor Peña-Macias (2023)

Kybernetika

Determining information ratios of access structures is an important problem in secret sharing. Information inequalities and linear rank inequalities play an important role for proving bounds on these ratios. Characteristic-dependent linear rank inequalities are rank inequalities which are true over vector spaces with specific field characteristic. In this paper, using ideas of secret sharing, we show a theorem that produces characteristic-dependent linear rank inequalities. These inequalities are...

Applying A Normalized Compression Metric To The Measurement Of Dialect Distance

Simov, Kiril, Osenova, Petya (2007)

Serdica Journal of Computing

The paper discusses the application of a similarity metric based on compression to the measurement of the distance among Bulgarian dia- lects. The similarity metric is de ned on the basis of the notion of Kolmo- gorov complexity of a le (or binary string). The application of Kolmogorov complexity in practice is not possible because its calculation over a le is an undecidable problem. Thus, the actual similarity metric is based on a real life compressor which only approximates the Kolmogorov complexity....

Currently displaying 1 – 5 of 5

Page 1