Fast approximation of centrality.
The problem of minimizing the maximum edge congestion in a multicast communication network generalizes the well-known -hard multicommodity flow problem. We give the presently best theoretical approximation results as well as efficient implementations. In particular we show that for a network with edges and multicast requests, an -approximation can be computed in time, where bounds the time for computing an -approximate minimum Steiner tree. Moreover, we present a new fast heuristic that...
The problem of minimizing the maximum edge congestion in a multicast communication network generalizes the well-known NP-hard multicommodity flow problem. We give the presently best theoretical approximation results as well as efficient implementations. In particular we show that for a network with m edges and k multicast requests, an r(1 + ε)(rOPT + exp(1)lnm)-approximation can be computed in O(kmε-2lnklnm) time, where β bounds the time for computing an r-approximate minimum Steiner tree. Moreover,...