On the approximability of comparing genomes with duplicates.
We study hardness of approximating several minimaximal and maximinimal NP-optimization problems related to the minimum linear ordering problem (MINLOP). MINLOP is to find a minimum weight acyclic tournament in a given arc-weighted complete digraph. MINLOP is APX-hard but its unweighted version is polynomial time solvable. We prove that MIN-MAX-SUBDAG problem, which is a generalization of MINLOP and requires to find a minimum cardinality maximal acyclic subdigraph of a given digraph, is, however,...
We study hardness of approximating several minimaximal and maximinimal NP-optimization problems related to the minimum linear ordering problem (MINLOP). MINLOP is to find a minimum weight acyclic tournament in a given arc-weighted complete digraph. MINLOP is APX-hard but its unweighted version is polynomial time solvable. We prove that MIN-MAX-SUBDAG problem, which is a generalization of MINLOP and requires to find a minimum cardinality maximal acyclic subdigraph of a given digraph, is, however,...
In the job shop scheduling problem -units-, there are machines and each machine has an integer processing time of at most time units. Each job consists of a permutation of tasks corresponding to all machines and thus all jobs have an identical dilation . The contribution of this paper are the following results; (i) for jobs and every fixed , the makespan of an optimal schedule is at most , which extends the result of [3] for ; (ii) a randomized on-line approximation algorithm for -units-...
In the job shop scheduling problem k-units-Jm, there are m machines and each machine has an integer processing time of at most k time units. Each job consists of a permutation of m tasks corresponding to all machines and thus all jobs have an identical dilation D. The contribution of this paper are the following results; (i) for jobs and every fixed k, the makespan of an optimal schedule is at most D+ o(D), which extends the result of [3] for k=1; (ii) a randomized on-line approximation...
We consider the NP Hard problems of online Bin Covering and Packing while requiring that larger (or longer, in the one dimensional case) items be placed at the bottom of the bins, below smaller (or shorter) items — we call such a version, the LIB version of problems. Bin sizes can be uniform or variable. We look at computational studies for both the Best Fit and Harmonic Fit algorithms for uniform sized bin covering. The Best Fit heuristic for this version of the problem is introduced here. The...
We consider the NP Hard problems of online Bin Covering and Packing while requiring that larger (or longer, in the one dimensional case) items be placed at the bottom of the bins, below smaller (or shorter) items — we call such a version, the LIB version of problems. Bin sizes can be uniform or variable. We look at computational studies for both the Best Fit and Harmonic Fit algorithms for uniform sized bin covering. The Best Fit heuristic for this version of the problem is introduced here. The...
In on-line computation, the instance of the problem dealt is not entirely known from the beginning of the solution process, but it is revealed step-by-step. In this paper we deal with on-line independent set. On-line models studied until now for this problem suppose that the input graph is initially empty and revealed either vertex-by-vertex, or cluster-by-cluster. Here we present a new on-line model quite different to the ones already studied. It assumes that a superset of the final graph is initially...
Applied research into Renewable Energies raises complex challenges of a technological, economical or political nature. In this paper, we address the techno−economical optimization problem of selecting locations of wind and solar Parks to be built in Egypt, such that the electricity demand is satisfied at minimal costs. Ultimately, our goal is to build a decision support tool that will provide private and governmental investors into renewable energy systems, valuable insights to make informed short...