Displaying 181 – 200 of 572

Showing per page

Computation of centralizers in Braid groups and Garside groups.

Nuno Franco, Juan González-Meneses (2003)

Revista Matemática Iberoamericana

We give a new method to compute the centralizer of an element in Artin braid groups and, more generally, in Garside groups. This method, together with the solution of the conjugacy problem given by the authors in [9], are two main steps for solving conjugacy systems, thus breaking recently discovered cryptosystems based in braid groups [2]. We also present the result of our computations, where we notice that our algorithm yields surprisingly small generating sets for the centralizers.

Computer-Assisted Proofs and Symbolic Computations

Krämer, Walter (2010)

Serdica Journal of Computing

We discuss some main points of computer-assisted proofs based on reliable numerical computations. Such so-called self-validating numerical methods in combination with exact symbolic manipulations result in very powerful mathematical software tools. These tools allow proving mathematical statements (existence of a fixed point, of a solution of an ODE, of a zero of a continuous function, of a global minimum within a given range, etc.) using a digital computer. To validate the assertions of the underlying theorems...

Computing ϵ-Free NFA from Regular Expressions in O(n log2(n)) Time

Christian Hagenah, Anca Muscholl (2010)

RAIRO - Theoretical Informatics and Applications

The standard procedure to transform a regular expression of size n to an ϵ-free nondeterministic finite automaton yields automata with O(n) states and O(n2) transitions. For a long time this was supposed to be also the lower bound, but a result by Hromkovic et al. showed how to build an ϵ-free NFA with only O(n log2(n)) transitions. The current lower bound on the number of transitions is Ω(n log(n)). A rough running time estimation for the common follow sets (CFS) construction proposed...

Currently displaying 181 – 200 of 572