Carathéodory balls and norm balls in
It is shown that for n ≥ 2 and p > 2, where p is not an even integer, the only balls in the Carathéodory distance on which are balls with respect to the complex norm in are those centered at the origin.
It is shown that for n ≥ 2 and p > 2, where p is not an even integer, the only balls in the Carathéodory distance on which are balls with respect to the complex norm in are those centered at the origin.
It is known that a closed polygon P is a critical point of the oriented area function if and only if P is a cyclic polygon, that is, P can be inscribed in a circle. Moreover, there is a short formula for the Morse index. Going further in this direction, we extend these results to the case of open polygonal chains, or robot arms. We introduce the notion of the oriented area for an open polygonal chain, prove that critical points are exactly the cyclic configurations with antipodal endpoints and derive...