Page 1

Displaying 1 – 2 of 2

Showing per page

Thick obstacle problems with dynamic adhesive contact

Jeongho Ahn (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider dynamic frictionless contact with adhesion between a viscoelastic body of the Kelvin-Voigt type and a stationary rigid obstacle, based on the Signorini's contact conditions. Including the adhesion processes modeled by the bonding field, a new version of energy function is defined. We use the energy function to derive a new form of energy balance which is supported by numerical results. Employing the time-discretization, we establish a numerical formulation and investigate...

Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey

Mainardi, Francesco, Gorenflo, Rudolf (2007)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05,The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classica theory of linear viscoelasticity, we contrast these two types of fractiona derivatives in their ability to take into...

Currently displaying 1 – 2 of 2

Page 1