Page 1

Displaying 1 – 9 of 9

Showing per page

Effects of In-plane Elastic Stress and Normal External Stress on Viscoelastic Thin Film Stability

F. Closa, F. Ziebert, E. Raphaël (2012)

Mathematical Modelling of Natural Phenomena

Motivated by recent experiments on the electro-hydrodynamic instability of spin-cast polymer films, we study the undulation instability of a thin viscoelastic polymer film under in-plane stress and in the presence of either a close by contactor or an electric field, both inducing a normal stress on the film surface. We find that the in-plane stress affects both the typical timescale of the instability and the unstable wavelengths. The film stability...

Efficient inexact Newton-like methods with application to problems of the deformation theory of plasticity

Radim Blaheta, Roman Kohut (1993)

Applications of Mathematics

Newton-like methods are considered with inexact correction computed by some inner iterative method. Composite iterative methods of this type are applied to the solution of nonlinear systems arising from the solution of nonlinear elliptic boundary value problems. Two main quastions are studied in this paper: the convergence of the inexact Newton-like methods and the efficient control of accuracy in computation of the inexact correction. Numerical experiments show the efficiency of the suggested composite...

Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation

Jong Yeoul Park, Sun Hye Park (2006)

Czechoslovak Mathematical Journal

We consider the damped semilinear viscoelastic wave equation u ' ' - Δ u + 0 t h ( t - τ ) div { a u ( τ ) } d τ + g ( u ' ) = 0 in Ω × ( 0 , ) with nonlocal boundary dissipation. The existence of global solutions is proved by means of the Faedo-Galerkin method and the uniform decay rate of the energy is obtained by following the perturbed energy method provided that the kernel of the memory decays exponentially.

Currently displaying 1 – 9 of 9

Page 1