Bending analysis of functionally graded plates in the context of different theories of thermoelasticity.
We investigate bifurcation in the solution set of the von Kármán equations on a disk Ω ⊂ ℝ² with two positive parameters α and β. The equations describe the behaviour of an elastic thin round plate lying on an elastic base under the action of a compressing force. The method of analysis is based on reducing the problem to an operator equation in real Banach spaces with a nonlinear Fredholm map F of index zero (to be defined later) that depends on the parameters α and β. Applying the implicit function...
The paper deals with the analysis of generalized von Kármán equations which describe stability of a thin circular clamped viscoelastic plate of constant thickness under a uniform compressive load which is applied along its edge and depends on a real parameter, and gives results for the linearized problem of stability of viscoelastic plates. An exact definition of a bifurcation point for the generalized von Kármán equations is given. Then relations between the critical points of the linearized problem...