Page 1 Next

Displaying 1 – 20 of 24

Showing per page

The balayage method: boundary control of a thermo-elastic plate

Walter Littman, Stephen Taylor (2008)

Applicationes Mathematicae

We discuss the null boundary controllability of a linear thermo-elastic plate. The method employs a smoothing property of the system of PDEs which allows the boundary controls to be calculated directly by solving two Cauchy problems.

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version of...

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version...

The Singularity Expansion Method applied to the transient motions of a floating elastic plate

Christophe Hazard, François Loret (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we propose an original approach for the simulation of the time-dependent response of a floating elastic plate using the so-called Singularity Expansion Method. This method consists in computing an asymptotic behaviour for large time obtained by means of the Laplace transform by using the analytic continuation of the resolvent of the problem. This leads to represent the solution as the sum of a discrete superposition of exponentially damped oscillating motions associated to the poles...

Time domain simulation of a piano. Part 1: model description

J. Chabassier, A. Chaigne, P. Joly (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this study is the time domain modeling of a piano. We aim at explaining the vibratory and acoustical behavior of the piano, by taking into account the main elements that contribute to sound production. The soundboard is modeled as a bidimensional thick, orthotropic, heterogeneous, frequency dependent damped plate, using Reissner Mindlin equations. The vibroacoustics equations allow the soundboard to radiate into the surrounding air, in which we wish to compute the complete acoustical...

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Currently displaying 1 – 20 of 24

Page 1 Next