Page 1

Displaying 1 – 17 of 17

Showing per page

Betti's reciprocal theorem for Cosserat elastic shells

Franco Pastrone (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

It is proved that, as in three-dimensional elasticity, Betti's theorem represents a criterion for the existence of a stored-energy function for a Cosserat elastic shell.

Bifurcation in the solution set of the von Kármán equations of an elastic disk lying on an elastic foundation

Joanna Janczewska (2001)

Annales Polonici Mathematici

We investigate bifurcation in the solution set of the von Kármán equations on a disk Ω ⊂ ℝ² with two positive parameters α and β. The equations describe the behaviour of an elastic thin round plate lying on an elastic base under the action of a compressing force. The method of analysis is based on reducing the problem to an operator equation in real Banach spaces with a nonlinear Fredholm map F of index zero (to be defined later) that depends on the parameters α and β. Applying the implicit function...

Bifurcations of generalized von Kármán equations for circular viscoelastic plates

Igor Brilla (1990)

Aplikace matematiky

The paper deals with the analysis of generalized von Kármán equations which describe stability of a thin circular clamped viscoelastic plate of constant thickness under a uniform compressive load which is applied along its edge and depends on a real parameter, and gives results for the linearized problem of stability of viscoelastic plates. An exact definition of a bifurcation point for the generalized von Kármán equations is given. Then relations between the critical points of the linearized problem...

Boundary controllability of the finite-difference space semi-discretizations of the beam equation

Liliana León, Enrique Zuazua (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a finite difference semi-discrete scheme for the approximation of the boundary exact controllability problem of the 1-D beam equation modelling the transversal vibrations of a beam with fixed ends. First of all we show that, due to the high frequency spurious oscillations, the uniform (with respect to the mesh-size) controllability property of the semi-discrete model fails in the natural functional setting. We then prove that there are two ways of restoring the uniform controllability...

Boundary controllability of the finite-difference space semi-discretizations of the beam equation

Liliana León, Enrique Zuazua (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a finite difference semi-discrete scheme for the approximation of the boundary exact controllability problem of the 1-D beam equation modelling the transversal vibrations of a beam with fixed ends. First of all we show that, due to the high frequency spurious oscillations, the uniform (with respect to the mesh-size) controllability property of the semi-discrete model fails in the natural functional setting. We then prove that there are two ways of restoring the uniform controllability...

Boundary feedback stabilization of a three-layer sandwich beam : Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Buckling of anisotropic shells. I

Anukul De (1983)

Aplikace matematiky

The formulation of differential equations of buckling problem of anisotropic cylindrical shell is presented here. The solution for anisotropic cylindrical shells without shear load in case of two way compression is found out from the differential equations formulated. The corresponding results for isotropic case are deduced as a particular case.

Buckling of anisotropic shells. II

Anukul De (1983)

Aplikace matematiky

The object of this paper is to find the solution of the differential equation of the buckling problem of anisotropic cylindrical shells with shear load in case of torsion of a long tube. The critical values of the shear load and the total torque are also found. The corresponding results for the isotropic case are deduced as a special case.

Buckling of beam-column problem of anisotropic cylindrical shells

Anukul De (1986)

Aplikace matematiky

The object of this paper is to formulate the differential equations in the beamcolumn problem of the buckling of anisotropic cylindrical shells, placed between the plates of a testing machine subject to an axial load P and a radial load H of sufficient magnitude to bring the expansion without constraint of the edges produced by P to zero deflection. The solution is obtained with necessary boundary conditions and the corresponding results for the isotropic case are deduced.

Currently displaying 1 – 17 of 17

Page 1